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Regular and chaotic motion of fluid particles in a 
two-dimensional fluid 
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Dipartimento di Fisica, Universita 'La Sapienza', Ple A Moro 2, 00185 Roma, Italy 

Received 20 January 1988, in final form 5 April 1988 

Abstract. We study the chaotic behaviour exhibited by particles which move in a two- 
dimensional fluid. The connection of this Lagrangian chaos with the velocity field behaviour 
is discussed both in the Lorenz model and in truncated Navier-Stokes equations. We 
indicate a possible method for the onset of Lagrangian chaos which seems to be rather 
generic. Lagrangian chaos appears when the Eulerian equation passes from a steady 
solution to a periodic one via Hopf bifurcation. I t  is also shown that the transition to 
chaos for the velocity field ('Eulerian chaos') does not affect the particle motion properties 
in some typical cases. 

1. Introduction 

In the Lagrangian description of the dynamics of a fluid one deals with the trajectory, 
say x( ')(f) ,  of each fluid particle i of the fluid. This approach, and the Eulerian one 
in which one considers the time evolution of the velocity field u ( x ,  t ) ,  are of course 
related by the differential equation 

dx 
-= u(x, t )  
d t  

and are thus equivalent, at least in principle. Let us stress that this does not mean 
that, if the velocity field exhibits a regular behaviour, the motion of a particle in the 
fluid should not be chaotic. Indeed, in three dimensions there are cases for which the 
particle motion can be chaotic, even if the velocity field is stationary [ 1,2], i.e. U = u(x). 
It should not be too surprising, since equation (1) is a non-linear dynamical system 
where deterministic chaos can arise. 

We note that (1) also describes the motion of a powder particle immersed in the 
fluid if this particle is small enough not to disturb the velocity field but also big enough 
not to perform a Brownian motion. 

The understanding of the Lagrangian chaos and of (possible) relations with the 
corresponding Eulerian behaviour is still at a rough level, although this problem is 
relevant both on the theoretical and applicative sides, e.g. in diffusion problems [3]. 

At present, there are only a few works which mainly investigate stationary velocity 
fields (ABC flows) in three dimensions [ l ,  21 and velocity fields which are periodic in 
time in two dimensions [4]. 
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We have thus decided to study two-dimensional Lagrangian behaviours in different 
Eulerian regimes. In particular, our analysis is focused both on the onset of the 
Lagrangian chaos and on the consequence of the onset of turbulence (in the velocity 
field) on the Lagrangian behaviour. We have considered the evolution of incompress- 
ible viscous fluids, by taking into account truncations of the Navier-Stokes equations: 

1 

P 
a,u + ( u s  v ) ~  = -- v p +  & u + f  

where p is the density, p is the pressure, v the kinematic viscosity and  f an  external 
forcing. As we consider truncations with few modes, we can have only temporal chaos 
of the velocity field; indeed the spatial structure is highly coherent. 

The truncated models have been exhaustively studied by varying the Reynolds 
number Re by Franceschini and  coworkers [5-91 and  we recall their derivation in 
appendix 1. Our dynamical system is thus given by 2 +  F equations: 

with y, f E R F  

( 3 b )  

where y are the variables which give the velocity field corresponding to the F modes 
considered, one of which is excited by an  external forcing. 

Let us stress that in two dimensions the incompressibility condition is satisfied by 
assuming 

d x  
- = u ( x ,  r ( t ) )  d t  

with x E R’ 

where rC, = rC,(x, t )  is the stream function. + is thus formally the time-dependent 
Hamiltonian of the dynamical system given by equation ( 3 b ) .  

We measure the degree of chaos of the system by the computation of three different 
Lyapunov exponents: A E  for the Eulerian part; A L  for the Lagrangian part, assuming 
that the evolution y ( t )  is known; A T  of the full system given by 2 +  F evolution 
equations. The Lyapunov exponents can be defined [ 101 by the relation: 

where the evolution of the tangent vectors z are given by the linearised equations 

for the Eulerian part, 

for the Lagrangian part, and 
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for the whole system ( 2 )  with y = ( y l , .  . . , yF, xI, x2) and G = (f,, . . . ,fF, u I ,  ul). The 
meaning of these Lyapunov exponents is quite clear: A €  estimates the exponential rate 
of the imprecision increasing in the velocity field knowledge, while the distance between 
two particles in a fluid increases as exp(A,t), when the Eulerian part is given (see 
appendix 2 for a discussion of this point). On the other hand, if the velocity field is 
not known the uncertainty of the position of a particle increases with an exponential 
rate given by AT.  

In general there is no relation between h E  and A L  while simple arguments show that 

hT=max(hE, A L ) .  (7)  

Let us in fact note that z iT '  = (z'~), 5"') where the evolution equation of l(L)~ R 2  can 
be written as 

Since (z(E'lx exp(hEt) one has that the second summation in (8) is O(e*E'). It follows 
that if A,> h E  the second summation in (8) is negligible with respect to the first one 
and h T = A L .  In the opposite case A,> h L ,  equation (8) has the same form of ( 6 b )  
with a forcing term O(e*E') which is much larger than the 'autonomous' term 

and so A T = h E .  In the truncated models of the Navier-Stokes equations we have 
always found that A,> h E ,  which seems to be a rather generic situation. 

In § 2 we nevertheless discuss an atypical example contrasting with the above 
standard case. We show that the Eulerian chaoticity of the Lorenz model [ l l ]  does 
not imply a chaotic motion of particles, i.e. one has h E >  0 while A L = O .  This is, 
however, due to the very particular form of the velocity field but it is worth stressing 
that such a non-generic feature arises in one of the most typical examples of chaotic 
systems with few degrees of freedom. 

In P 3, we discuss the case of more generic Lagrangian behaviours obtained by 
varying the Reynolds number in non-trivial truncations of the Navier-Stokes equations. 
In 4 4  the reader will find some concluding remarks. We study the features of the 
particle motion around: 

(i)  the transition of the Eulerian flow from the stable stationary state to the periodic 
motion by a Hopf bifurcation; 

(ii) the transition ofthe Eulerian flow from a quasiperiodic state to a chaotic motion. 
In the first case the stream function passes from a time-independent form to a 

periodic one. Note that equation (3  b )  describes a two-dimensional Hamiltonian system 
and one expects to observe the typical onset of chaos of these systems. 

In case (ii) the transition to chaos (in the Eulerian sense) seems to have no effect 
on the Lagrangian behaviour, i.e. A does not change with the Reynolds number value. 
This result is important from an experimental point of view, as it means that measure- 
ments of particle positions in a fluid do not allow us to determine the presence of 
chaotic attractors for the Eulerian part. 

In appendix 1 we sketch the derivation of the truncated models and in appendix 
2 we comment on the problem of the divergence of particles which are initially close 
since there are some controversial positions on this in the literature [ 12-14]. 
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2. The Lorenz model: an atypical example 

We want to discuss here the Lorenz model behaviour which appears to be quite 
surprising. In fact, it does not exhibit Lagrangian chaos even when it is chaotic in the 
Eulerian sense. This is due to the particular form of the evolution equations for the 
velocity field and contrasts with generic situations. Nevertheless, the Lorenz model 
is, for historical reasons, one of the most widely studied chaotic dynamical systems. 
It is thus interesting to point out the peculiar Lagrangian motion originated by it. 

Let us recall that the Lorenz model is obtained by a simplification of the equations 
which rule the atmospheric convection. The gravitational field and the temperature 
difference are assumed to be directed along x2 with 0 s  x2 7~ and there is a periodicity 
in direction 1 .  One considers three degrees of freedom ( F  = 3), i.e. three variables y, 
related to the temperature gradient and to the stream function as follows: 

tj = y, sin(x,) sin(x2) 

ST = 21’2y2 cos(x,) sin(x2) - y3 sin(2x2) 

where 6T is the departure of the temperature from the linear behaviour in the 
non-convective case. 

Equations (3) can thus be written as 

- -ay1 + C Y 2  
-- dYl 
d t  

- RY, - Y2 - Y I Y 3  
-- dY2 
d t  

8 
- Y I Y 2 - 3 Y 3  

dY3 
d t  
_.- 

- u1 = a , ~ / = 2 ” ~ y , ( t )  sin(x,) cos(x2) dx, 
d t  
-- 

- u2 = +,tj = -21’2yl( t )  cos(x,) sin(x,). dx2 
d t  
_- 

Here R is the Rayleigh number which plays a role analogous to that of the Reynolds 
number in the Navier-Stokes equations, U is the Prandt number and xi, t and yi are 
rescaled non-dimensional variables. Since the velocity field has zero perpendicular 
component on the boundaries of the square [0, 7r3 x [0, T] and it is periodic in x, , the 
particle is confined in [ m, T( n + l)]  x [0, 571 for each n value, if it is in this square at 
the initial time. We can thus limit ourselves to study the zone [0, 573 x [0, 7r3. 

One can show that AL=OVR and that the orbit (x l , x2 )  is always closed and 
depends only on the initial condition and not on R;  see figure 1. We can easily explain 
this feature of the orbits, for example by considering an initial condition near the 
Lagrangian fixed point (5712, .n/2), say ( ~ 1 2  + q, , 7 ~ / 2  + q2), with qi small enough. We 
thus get from (10d, e ) :  

dql 
-= -2”2y,(t)q2 d t  

dq2 - = 21’2y,( t)q,  
d t  
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X1 

Figure 1. Structure of Lagrangian orbits (x , ,  x2) for the Lorenz model (10). 

By integrating (11) using polar coordinates we see that r ( t )  = constant while the phase 
is 4 ( t )  = 2”* I y , ( ~ )  d7. The particle therefore moves along a circle of radius r but 
with an angular velocity 2”*yl( t )  which is chaotic for some R values. 

It follows that A L  = 0 since two particles which are initially close do not diverge as 
both Sr  and S + ( t )  are constant. The previous result, obtained near the Lagrangian 
fixed point, holds for each initial condition because one has from (10d, e) that the 
derivative 

depends neither on R nor on t. Therefore one has that the orbit structure of (lOd, e)  
coincides with that of an autonomous system with y1 = constant. The Bendixson- 
PoincarC theorem [ 151 and the incompressibility constraint div U = 0 then ensure that 
the form of the orbits has to be closed. Moreover one can verify that (lOd, e )  have 
the integral of motion: 

(13) h(x) = sin(x,) sin(x,) =constant. 

Let us consider two particles, initially closed, in the same velocity field so that 
h(x“’) = h(x‘*’). Moreover, the two particles describe closed orbits. Therefore in order 
to have an exponential growth of the distance one has to request that the ‘phase’ 
difference 64 = (4“) - 4(2)) increases exponentially. One can see that this is not 
possible. In fact d 4 / d t  = Q ( h ,  y l )  and since y1 is the same for the two particles one 
has I S 4 ( t ) l <  constant x t + 164(0)/. Therefore one obtains A L  = 0 even if A,> 0. This 
means that the imprecision in the knowledge of the particle position does not increase 
exponentially once the velocity field is specified. Two particles therefore remain close 
in the same Eulerian field realisation. Nevertheless the particle motion appears irregular 
if A E  > 0, as shown in figure 2. Let us in fact stress that in general we do not know 
with infinite precision the velocity field (i.e. the y )  and this could involve an exponential 
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Figure 2. x,( r )  against r for the Lorenz model: ( a )  R = 22, U = 10 (the Eulerian part 
( loa,  b, c )  is regular); ( b )  R = 26.24, U = 10 (the Eulerian part is chaotic). 

instability in x( t ) ;  e.g. in the case with the initial condition near the Lagrangian fixed 
point one has 

s d ( t )  =2"* J t j y , ( ~ )  d T a  exp(A,t) 

where 64 is now the difference between the phase of the particle in the velocity field 
given by y and that in the velocity field given by y + 6y. 

We, however, expect that the opposite situation A E  = 0 and A,>  0 is the typical one 
for low values of the control parameter (e.g. the Reynolds number in the Navier-Stokes 
equations) as it corresponds to the presence of chaotic particle motions in regular 
velocity fields. 

3. Irregular motions in two-dimensional fluids 

This section examines the motion of particles in a two-dimensional incompressible 
fluid described by the Navier-Stokes equations. We shall limit ourselves to the study 
of the so-called truncated models. Let us consider periodic boundary conditions and 
develop the stream function + in a Fourier series taking into account only F modes 
(see appendix 1 for the details): 

9=-iCIk,l- 'y,~exp(ik, .  x)+cc.  (14) 
I 

By inserting the velocity field obtained by (14) into the Navier-Stokes equations we 
have a system of non-linear differential equations of the form ( 3 a ) :  

_- d y r -  -kfv, + 1 A , r m ~ , ~ ,  + A  
d t  1. m 
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with i = 1 , 2 , .  , . F. We have studied the Lagrangian behaviour (3b)  exhibited by this 
system for F = 5 and F = 7, using the results previously obtained for the Eulerian part. 

In  the case F = 5 for Re < Re, = 22.853 701 63 . . . , there are four stable stationary 
solutions f. At Re = Re, these solutions become unstable, four stable periodic orbits 
arise via Hopf bifurcation [16], and one finds that: 

y (  t )  = + + (Re  - Re,)"26y( t )  + O(Re - R e , )  (16)  

where 6 y (  t )  is periodic with period T( Re)  = To + O( Re - Re,) and To = 0.732 27 . . . . 
These limit cycles are stable up to Re, = 28.41 . . . ,-where they bifurcate to new double 
period orbits. A cascade of bifurcations takes place giving rise to new multiperiod 
orbits up to a critical value Re, = 28.73 above which chaotic attractors appear and h E  
becomes larger than zero. 

The stream function for Re < Re, is asymptotically stationary, i.e. $(x, t )  + $(x). 
It follows from the Bendixson-PoincarC theorem [ 151 and from the divergenceless 
condition div U = 0 that the solutions x( t )  of the equations 

dx 
d t  
-= u ( x )  = V'$ V'= (82, - 8 , )  

have a regular behaviour with fixed points, or closed orbits, or going to infinity orbits. 
Figure 3 shows the orbit structure for Re = Re, - 0.05 and 

(?)"2[(&Re,)2- i]1 '2} ,  

The structure of the separatrices and of the hyperbolic fixed points is well evident. 
There are two kinds of separatrices: the isolated 'eights' labelled by A and the periodic 
ones labelled by B in figure 3. 

For Re = Re, + E the stream function becomes time dependent with the form 

f = { - (?)l'2, -,&($)"2 Re,, &Re, ,  $[(&Re,)' 

~ ( x ,  t ) =  J ( X ) + . Z ' ' ~ ~ + ( X ,  t ) + O ( E )  (17)  

where 4 is given by and Si,b by 6y and is thus periodic with period T. It is well 
known that in one-dimensional time-dependent Hamiltonian systems, the onset of 

- 0  2 . 5  5.0 7.5 10.0 12.5 
Xl 

Figure 3. Structure of the separatrices for equation (36) with @ given by the 
model (see equation (A1.3)). 
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chaos is typically observed to begin around the separatrix by unfolding and crossing 
of the stable and unstable manifolds [17]. There exists a method due to Melnikov 
[18] in order to rigorously prove that the motion is chaotic in a small region around 
separatrices, but it requires the explicit knowledge of the unperturbed trajectory on 
the separatrices. In our case this is not trivial, because of the complicated structure 
of the Hamiltonian, i.e. $. 

Figure 4 shows that for small E the Lyapunov exponent A L  is positive only in a tiny 
region around the separatrices while it vanishes in the other regions. One can pictorially 
express (see figure 5) the chaotic and regular motions by means of a PoincarC section 
given by 

x ( n T ) + x ( n T +  T )  (18) 

and we numerically compute the period T ( E ) .  The size of the chaotic region around 

Figure 4. h L ( f )  = ( l j r )  l n ( ~ z L ( f ) ~ / / z L ( 0 ) ~ )  against t at E =0.05 with differe Sonditions: A, 
(x,(O), ~ ~ ( 0 ) )  = (3.2,  -1.6), close to a separatrix; B, (x,(O), x,(O)) = (4.3, -2.0), far from the 
separatrices; C, (.x,(O), ~ ~ ( 0 ) )  = (4.267, -3.009), far from the separatrices. 

XI 

Figure 5. Poincari section (18)  of the trajectories with the initial conditions of figure 4. 
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+ 
Q - +  + + - 

I I I I I I ,  I I I I I I _  

the separatrices increases with e and at large values of E (  -0.7) it is practically 
impossible to distinguish between a regular region and a chaotic one. 

For small F there are three types of behaviour with respect to diffusion. 
(i) A motion confined inside the separatrices of kind B, where the motion is regular 

( i i )  A regular motion that goes to infinity, in the region out and far enough from 

(iii) A chaotic motion near these separatrices with non-trivial diffusive features. 
At large E values all the regions become connected and  one observes just one 

diffusive behaviour. 
We want to stress that, while the diffusion behaviours are strongly related to the 

detailed structures of the velocity fields, this scenario for the onset of the Lagrangian 
chaos should be quite generic. Indeed the features which we have described are strictly 
related to the separatrix structure and to the mechanism for the appearance of chaos 
in one-dimensional time-dependent Hamiltonian systems. We therefore expect in ZD 
this kind of behaviour whenever Hopf bifurcations are exhibited by the Eulerian part. 
Note that this is just the case for the whole class of truncated models of the Navier- 
Stokes equations. 

However, the transition to the Eulerian chaoticity depends on the particular model 
considered, e.g. in the five-modes truncated model it happens via period doubling and 
moreover the system again becomes regular for a further increase of the Reynolds 
number. The seven-modes model has a different kind of transition (i.e. collapsing of 
periodic orbits) and there the system does not come back to a regular velocity field at 
larger Re. 

We have therefore computed h E  and h L  as a function of Re in both these models. 
In figure 6 it is well evident that A L  is not affected at all by the sharp transition to 
Eulerian chaoticity in the five-modes model. The same qualitative behaviour has been 
observed for the seven-modes model around the critical value Re, = 5 5 5 .  

This suggests that the onset of the Eulerian chaos has no influence on the Lagrangian 
properties also in two-dimensional fluids. 

or chaotic according to the distance from the ‘eights’. 

the separatrices of kind B. 

t + + + 
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We want to note that the above scenario does not hold in 3 ~ ;  we recall also that 
the case with a stationary velocity field can give a Lagrangian chaotic behaviour [ 1,2]. 
Therefore we d o  not expect a generic mechanism for the transition to Lagrangian chaos 
in 30 similar to one due  to the Eulerian Hopf bifurcation, except perhaps in some 
very particular situations [ 191. 

4. Conclusions 

We have seen that in two-dimensional incompressible fluids the Lagrangian behaviour 
has a clear connection with the structure of the velocity field only when the Eulerian 
part exhibits a Hopf bifurcation. In the other cases no simple relations can be found. 
We have in particular shown that a system can be chaotic in the Lagrangian sense 
without a chaotic velocity field (which is the typical case) but it is also possible in the 
opposite (peculiar) situations; see the discussion on the Lorenz model. 

Let us stress that one cannot separate the Lagrangian and Eulerian properties by 
experimental measurements involving only the motion of one particle (e.g. a buoy in 
oceanic currents [20]). Indeed, using standard signal treatment methods [21] one can 
extract the total Lyapunov exponent A T  but not A L  or A E .  However, in generic cases 
one expects that A T =  A L ,  but there exist counterexamples as we have discussed in § 2. 
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Appendix 1 

We briefly discuss a quite standard procedure for obtaining a finite degrees of freedom 
approximation of the Navier-Stokes equations (2) [9]. Let us consider periodic 
boundary conditions on a square of edge 27r and expand U in the Fourier series taking 
into account the incompressibility condition: 

k’ 
u ( x ) = C e x p [ i ( k -  x)]yk- 

k Ikl 
(Al.1) 

where k = ( k , ,  k 2 ) ,  k’= ( k 2 ,  - k , )  and yk = -y?k because of the reality of u ( x ) .  By 
expanding p and f in a similar way one has the evolution equations for a truncation 
L of Yk 

where L is a set of wavevectors k such that if k E  L then - k c  L. Let us define the 
modes 1 ,2 , .  . . , 9  corresponding to k, , k 2 , .  . . , k9 with k, = (1, l ) ,  k2 = (3,0), k3 = 
(2,-1), k 4 = ( 1 , 2 ) ,  k5=(0 ,1 ) ,  k 6 = ( l , 0 ) ,  k7=(1 , -2 ) ,  k ,= (3 ,1 ) ,  k 9 = ( 2 , 2 )  and put 
Ykl=YI, Yk>=-iy2, Yk,=Y3, Yk,=iy4, Yk,=YS, Y k 6 = i Y 6 ,  Yk,=iY7, Yks=YS, Yk9=iY9. 
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The equations for y, with j = 1 , .  . . , 9  become, after rescaling by a factor 
letting v = 1 (this is equivalent to a change of time and length units) and assuming the 
forcing only on the mode k 3 :  

-- y 2  - - 9 y 2 +  3yl  Y3+9Y5Y8+ 3Y7Y9 
d t  

dY3 9 
- = - 5 %  - 7YlY2+- Y I Y 7  - 5Y4Y8+ Re d t  43 

(A1.3) 

dY6 
- = -Y6 - 8% Y5 -3Y4Y9 d t  

dY1 9 
d t  8 
-- - -5Y7 -- YlY3+ Y2Y9 

Now Re af, is the Reynolds number, the only control parameter for (A1.3). There 
exist systematic studies on equations (A1.3), considering 5,6,7,  8 and 9 modes; see 
[9] for a review. In these works the following behaviours are observed at increasing 
Reynolds number Re: 

(i) stable fixed points; 
(ii) Hopf bifurcations to periodic cyclic orbits; 
(i i i)  periodic/aperiodic/chaotic orbits. 
For large Reynolds number (i.e. the case (iii)) the behaviours are strongly dependent 

on truncation. In our paper we have considered only the truncated equations with 
five modes ( j  = 1,.  . . , 5 )  and seven modes ( j  = 1, .  , . ,7) .  It is worth noting that the 
five-modes model is regular at very large Re, while the seven-modes one is chaotic in 
the same limit. 

Appendix 2 

We want here to discuss an old and often debated problem of the physics of fluids 
which is related to the results obtained in this paper. We are actually interested in the 
growth of the distance I ( ? )  of two particles which are initially close in the fluid. 
Batchelor [ 121 was one of the first to argue, by non-rigorous but reasonable arguments, 
that in the limit of large times and I( t = 0 )  -+ 0: 

l ( t ) a l ( O )  eo' with a > 0. (A2.1) 
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This conclusion has been disputed by Cocke [13] who claimed that (A2.1) does not 
hold. His arguments are quoted as correct even in one of the main textbooks of fluid 
dynamics [14]. On the contrary, we think that (A2.1) does not disagree with any 
general principle and clearly follows by Lagrangian chaos. Indeed a is just the L E  h L  
defined in (5). 

Cocke’s conclusion is due  to an  exchange of limits. As he proved that under general 
assumptions, in a turbulent fluid at large time: 

I ( t ) c C t ” ’  (A2.2) 

and therefore t - ’  In I (  t )  + 0, he concluded that (A2.1) could not hold. However, there 
is no disagreement between (A2.1) and (A2.2) because (A2.2) is derived at large times 
with fixed I ( O ) ,  i.e. t >> Iln I(0)l. On the other hand, the limit I(0) + 0 is taken before 
the limit t + cc in (G2.1) and we think that this is the origin of the misunderstandings 
in the matter. 

Let us finally remark that the two different behviours (A2.1) at ‘small’ times and  
(A2.2) at ‘large’ times can be easily observed in numerical experiments [22]. 
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